
11_- -- 03) STM ADA O FO2 D426C5
10-0-1,GOM S USBD OP snxIL COOPUTE S

OLSA 9 p SC $ C 3025 CSCL 12A

Uncaas

AND

NASA TECHNICAL NASA TM X-3003
MEMORANDUM

IAI

!r

STAR ADAPTATION
FOR TWO ALGORITHMS
USED ON SERIAL COMPUTERS

by Lona M. Howser and Jules J. Lambiotte, Jr.

Langley Research Center

Hampton, Va. 23665

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. * JUNE 1974

30

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
NASA TM X-3003

4. Title and Subtitle 5. Report Date
June 1974

STAR ADAPTATION FOR TWO ALGORITHMS
6. Performing Organization CodeUSED ON SERIAL COMPUTERS

7. Author(s) 8. Performing Organization Report No.

Lona M. Howser and Jules J. Lambiotte, Jr. L-9380
10. Work Unit No.

9. Performing Organization Name and Address 023-11-16-05

NASA Langley Research Center 11. Contract or Grant No.

Hampton, Va. 23665

13 Type of Report and Period Covered
12. Sponsoring Agency Name and Address Technical Memorandum

National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546

15. Supplementary Notes

16. Abstract

Two representative algorithms used on a serial computer and presently executed on the

Control Data Corporation 6000 computer were adapted to execute efficiently on the Control

Data STAR-100 computer. Gaussian elimination for the solution of simultaneous linear equa-

tions and the Gauss-Legendre quadrature formula for the approximation of an integral are the

two algorithms discussed. This paper describes how the programs were adapted for STAR

and why these adaptations were necessary to obtain an efficient STAR program. Some points

to consider when adapting an algorithm for STAR are discussed. Program listings of the

6000 version coded in 6000 FORTRAN, the adapted STAR version coded in 6000 FORTRAN,
and the STAR version coded in STAR FORTRAN are presented in the appendices.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

STAR computer Unclassified - Unlimited

Gaussian elimination

Numerical integration

STAR Category 19

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*

Unclassified Unclassified 2q, 0 $3.25

For sale by the National Technical Information Service, Springfield, Virginia 22151

STAR ADAPTATION FOR TWO ALGORITHMS

USED ON SERIAL COMPUTERS

By Lona M. Howser and Jules J. Lambiotte, Jr.

Langley Research Center

SUMMARY

Two representative algorithms used on a serial computer and presently executed

on the Control Data Corporation 6000 computer were adapted to execute efficiently on the

Control Data STAR-100 computer. Gaussian elimination for the solution of simultaneous

linear equations and the Gauss-Legendre quadrature formula for the approximation of an

integral are the two algorithms discussed. This paper describes how the programs were

adapted for STAR and why these adaptations were necessary to obtain an efficient STAR

program. Some points to consider when adapting an algorithm for STAR are discussed.

Program listings of the 6000 version coded in 6000 FORTRAN, the adapted STAR version

coded in 6000 FORTRAN, and the STAR version coded in STAR FORTRAN are presented

in the appendices.

INTRODUCTION

Many algorithms which are presently used on the Control Data Corporation 6000

computer and executed in a serial mode are suitable for the Control Data STAR-100 com-

puter. However, if these algorithms were converted line-by-line to the STAR coding, it is

not likely that they would make an efficient STAR program and might actually produce code

which would run inefficiently on a vector computer such as STAR. The 6000 code will need

to be adapted for STAR to produce an efficient STAR code. This paper discusses two algo-

rithms of this nature. A comparison of the 6000 coding and STAR coding of the identical

algorithm is made for two different algorithms: one for the solution of simultaneous

linear equations using Gaussian elimination with partial pivoting and the other for numer-

ical evaluation of an integral using the Gauss-Legendre quadrature formula. The paper

discusses how the 6000 program was adapted for STAR, the reasons for the adaptations,

and somefactors which should be considered when adapting a program. FORTRAN

codings of the algorithms are presented in the appendices. The STAR codings use the

FORTRAN language defined in reference 1.

AIDS FOR ADAPTING AN ALGORITHM

When beginning to adapt an algorithm for STAR, it is not enough to look at just seg-
ments in the 6000 coding, but it is necessary to look at the entire algorithm to get the

total picture. Some questions to pose are: What is the final result ?, What is needed at

various steps in the algorithm ?, and What is computed independent of other steps and

what is repeated?

It will be helpful to review a few definitions and terms which are important to

remember when formulating a program for the STAR computer. (For a comprehensive
discussion of STAR architecture and hardware instructions, see ref. 2.)

(1) A vector is a set of elements stored in contiguous locations in memory.

(Array and vector are used interchangeably in this discussion.)

(2) Vector timing is the time required by the central processing unit to process a
vector. It is obtained by the equation T = S + 1/c, where

T time in clocks (1 clock represents 40 nanoseconds)

S startup time, different for each vector instruction or macro

I length of vector (number of elements in the vector)

c constant depending on the type of instruction and whether the
vector elements are each stored in 32- or 64-bit words

(3) A page is a block of storage which contains data or instructions. A program is
made up of one or more pages. (See ref. 3.)

(4) A program's working set is the smallest set of pages which must be in central
memory for the program to operate efficiently.

(5) A page fault occurs when a program references a page which is not contained in
central memory; that is, it is not in the program's present working set.

(6) Paging is the process of bringing a page into central memory or releasing a
page.

When adapting the 6000 code to the STAR code, the following factors are important:

(1) Use vector instructions. This requirement may mean reordering steps in an
algorithm so that elements in contiguous locations can be operated on or it may mean
rearranging storage.

(2) Use long vectors. If a choice is available whether to use many short vectors
or a few long vectors, use the long vectors unless the overhead to create the long vectors

2

is too great. This procedure reduces the effect of the startup time associated with each

vector instruction.

(3) Avoid or use sparingly coding which will generate costly vector instructions

and macros, that is, costly as compared with some of the faster vector instructions.

Refer to the most current timings available. Examples of such instructions and macros

are divide, transmit indexed list, and dot product.

(4) Avoid unnecessary paging problems by creating a reasonable working set for

the program. When working with a particular array, perform all the operations possible

with this array before working with another array. This factor will be more critical

with long arrays, but it is a good habit to form and should help reduce page faults.

(5) Investigate the feasibility of creating more answers than are really needed.

Because of the high result rate of vector instructions, it may be advantageous to use an

approach which generates a larger number of results than are needed in order to avoid

scalar computation. This idea, however, should be used cautiously. (See the discussion

in ref. 4 on parallel algorithms for tri-diagonal equation solvers.)

ADAPTATION OF AN ALGORITHM FOR THE SOLUTION OF

SIMULTANEOUS LINEAR EQUATIONS

A Langley Research Center 6000 library subroutine GELIM (see listing in appen-

dix A) uses Gaussian elimination with partial pivoting to obtain the solution of the set of

simultaneous linear equations, AX = B, where A is the square matrix of coefficients

of order n, X is a vector of unknowns of length n, and B is a constant matrix of

order n x r where r is the number of right-hand sides. The matrix A is factored

into a lower unit triangular matrix and an upper triangular matrix. (For numerical

details of the algorithm, see any numerical analysis text, such as ref. 5.) The subroutine

also contains an option for the evaluation of the determinant of matrix A.

The version of GELIM on the Langley Research Center 6000 library performs

Gaussian elimination as generally defined by operating on one row of A at a time. At

the kth step, column k is searched for the largest element; then row k and the row which

contained the largest element are interchanged. The pivot element is then used to obtain

zeroes in all positions in its column below the diagonal. This procedure requires multi-

plying, a row of A by the appropriate scalar and subtracting this product from another

row of A.

Since these row modifications are the usual way the steps in Gaussian elimination

are thought of being performed, it would seem normal that for STAR the matrix would be

3

stored by rows. This method of storage means that elements in one row of a matrix

would be stored in contiguous locations so a row of the matrix could be a vector and the

steps would be performed by using vector instructions.

In the present version of STAR FORTRAN, two-dimensional arrays are stored

columnwise and an optional storage arrangement by rows is not available. This column

storage means that elements in one row of matrix A are not stored in contiguous loca-

tions and modifying the matrix a row at a time would mean that few vector instructions

could be used. This fact makes it desirable to see whether Gaussian elimination can be

performed by modifying matrix A by using columns so that vector instructions can be

used. As will be shown below, Gaussian elimination can be performed by operating on

columns of the matrix.

An option to store matrices by rows may be available in a later version of

STAR FORTRAN, but when the 6000 code was modified to perform Gaussian elimination

by columns, many advantages for the column storage over the row storage appeared;

therefore, column storage is recommended. The following section will show how

Gaussian elimination can be performed by using vector instructions when the matrix is

stored by columns and will identify these advantages. The section entitled "Row Storage"

shows the sequence of steps performed in the row storage which is identical to the pres-

ent 6000 algorithm.

Column Storage

Gaussian elimination can be performed by modifying one column of the matrix at a

time. This is done by a reordering of the operations from the usual row operations.

Accomplishing the triangularization of matrix A by performing the work on columns

makes efficient use of STAR and does the identical arithmetic normally done when per-

forming the work on rows.

The kth step of the triangularization can be performed as shown below, where n

is the number of equations and r is the number of right-hand sides. All references to

the kth column refer to column entries below the diagonal.

(1) Divide the kth column of A by the akk element and store in the kth column.

This is a vector divided by a scalar:

aik (i = k + 1, . .. , n)
ik ak k

(2) Multiply the kth column by the akj element and subtract this result from the

jth column. This is a vector multiplied by a scalar and then a vector subtract:

4

(3) Repeat the sequence of vector instructions in step (2) for the columns of

A (j =k+ 1, . . ., n).

(4) Multiply the kth column of A by the bkj element of B and subtract this

result from the jth column of B. This is a vector multiplied by a scalar and then a

vector subtract:

bij = bij - aikbkj (i = k + 1, . .. , n)

(5) Repeat the vector instructions in step (4) for the remaining right-hand sides
of B (j = 1, 2, . . ., r).

(6) Repeat steps (1) to (5) until the triangularization of matrix A is complete

(k= 1, 2,. . ., n- 1).

Often a subroutine for the solution of simultaneous equations requires the user to

append the right-hand sides to the original matrix. The column storage arrangement

allows the right-hand sides to be done as separate vector instructions without having to
append the right-hand sides to the original matrix. This arrangement is less cumber-

some for the user since the right-hand side can be a separate array.

GELIM uses partial pivoting which means that rows will need to be interchanged at

times. At the kth step, column k is searched for the largest element and the row con-

taining the largest element and the kth row are interchanged. The column search to find

the largest element can easily make use of vector instructions, but the row interchange

presents a problem. Elements of rows will need to be interchanged and none of them

will be stored in contiguous locations. Not only are they not contiguously stored, but for

a very large matrix a column could use one or more pages. For a large matrix it is

unlikely that a program will be allowed a working set large enough to contain the entire

matrix. This situation would mean that the row elements to be interchanged would be on

separate pages and would have to be brought into and then out of core only to reference

two elements on the page. Then when the column modifications are performed, the same
pages will need to be brought back into core again. This procedure would be extremely

inefficient.

A form of indexing could be set up to achieve row interchange, but it would need

one of the more time-consuming instructions (transmit indexed list) and the referencing

across page boundaries would still be present. No vector instruction can help perform

the interchange efficiently; thus, a scalar interchange will be just as efficient.

5

The possible paging problem can be alleviated by not interchanging an entire row

at one time as it is performed on the present 6000 version. At the kth step when the

largest element in column k is found, interchange the two elements only in column k.

When working with the jth column, both column k and column j are needed. Both of the

elements which need interchanging are in the jth column which will be in the program's

working set at that time. Therefore, before beginning the operations on the jth column,

interchange the two elements. In this way, the page or pages containing that column will

need to be brought into core only once per step of the algorithm.

The subroutine also computes the value of the determinant of matrix A which is

equal to the product of the elements of the diagonal of the triangular matrix. In the

6000 version, the product is computed after the triangularization is completed. For the

STAR, this computation presents a similar situation as the rows interchange; the diagonal

elements may be on separate pages and are not stored contiguously. Therefore, vector

instructions cannot be utilized. The product will be scalar multiplication, but after the

kth step has been completed, the partial product can be formed by using the diagonal ele-

ment of column k while column k is still in the program's working set. This grouping of

row interchange, triangularization of the matrix, and evaluation of the determinant should

create an efficient working set for the program with a minimum of paging.

The remaining task of the subroutine is to perform the back substitution. Back

substitution generally uses the dot product of a row and the solution vector. This method

is used on the 6000 version, but presents problems for STAR column storage since it

uses the costly dot product macro and references elements of one array by rows and

references elements of the other array by columns. This problem can be eliminated by

reordering the steps needed to perform back substitution and all the work can be per-

formed on columns.

The steps to find the kth unknown by back substitution by using vector instructions

but not using the dot product are as follows:
bk This step obtains the kth(1) A scalar divide is always necessary, bkj = This step obtains the kth

unknown for the jth right-hand side and stores the unknown in the right-hand side vector.

(2) Multiply column k of A by the kth unknown obtained in step (1) and subtract

this result from the jth column of B. This is a vector multiplied by a scalar and then a

vector subtract:

bij = bij - aikbkj (i= 1, 2, . ., k- 1)

(3) Steps (1) and (2) are repeated for all the right-hand sides (columns of B)
(j = 1,2, . .. ,r).

6

(4) Steps (1), (2), and (3) are repeated for all the unknowns (k = n, . .. , 2, 1).
When k = 1, step (2) is omitted.

Row Storage

The way of performing the steps in Gaussian elimination as commonly seen in texts

is by operating with rows. The elements in one row would be stored contiguously and

the triangularization of matrix A would make efficient use of vector instructions.

To make the triangularization most efficient, the right-hand sides must be appended

to the matrix A for row storage. The length of the longest vector used would be

n + r - 1 where n is the number of unknowns and r is the number of right-hand

sides. If a separate array is used for the right-hand side, two identical vector instruc-

tions would be needed for each operation, one of length n and one of length r. This

method would be inefficient because the startup times would be multiplied by a factor

of 2 and if r is 1, it would mean using vector instructions of length 1. Appending the

right-hand side is a disadvantage in that it is awkward for the user.

Step k of the triangularization when the matrix is stored by rows is as follows:

(1) Perform a scalar divide, aik/akk and store in aik.

(2) Multiply row k of A by aik and subtract from the ith row. This is a vector
multiplied by a scalar and then a vector subtract:

aij = aij - aikakj (j = k + 1,. . ., n+r)

(3) Repeat steps (1) and (2) for all rows (i = k + 1, . . ., n).

(4) Repeat steps (1), (2), and (3) for all columns until the triangularization is com-

plete (k = 1, 2, .. ., n - 1).

The row interchanges necessary for partial pivoting are very easy when the matrix

is stored by rows, but the column search will be scalar operations. In addition, there
will be no way to avoid possible paging problems for a large matrix during the column
search. The elements on each row of the column may be on separate pages, but the
search has to be completed before any row operations can begin.

The determinant evaluation could be performed the same way as in the column
storage, after a step in the Gaussian elimination is completed. The pages for a large

matrix would not have to be brought in only to get one element for the evaluation of the

determinant, but the information would be used while the page was still in memory.

When performing the back substitution, if the matrix is stored by rows, there is no

way of using the scheme devised to eliminate the need for the dot product macro. The

7

back substitution references a row of the matrix and a column of the right-hand side. To

be able to use vector instructions, a vector would need to be created which would contain
the elements in the column. This method would be expensive and inefficient, and it is

likely that the vector code would be no better than the scalar code. Either would be

inefficient here, because of the referencing of a row and a column.

Table I summarizes the comparison of the two storage arrangements at the various

steps in the algorithm. The column storage is more advantageous for STAR than the row
storage arrangement.

TABLE I.- COMPARISON OF ROWWISE AND COLUMNWISE

STORAGE OF MATRIX

Step Rowwise Columnwise

Column search Scalar: no way to avoid Vector

possible paging problems

Row interchange Vector: easy Scalar: can avoid possible

paging problems

Triangularization Vector: usual way it is done Vector: with steps reordered

Back substitution Dot product macro: costly, Vectors: columns only, no

referencing row and col- dot product, more efficient

umn, possibly not

vectorizable

Determinant evaluation Scalar Scalar

Treatment of right-hand Must be appended to matrix Can be separate variable and
sides for efficient vector use still use vectors efficiently

Flow Chart

Subroutine GELIM was adapted for use on the STAR computer by using the same
numerical method that was used on the 6000 computer. The matrix is stored by columns.
By reordering computational steps, vector instructions can be used and a reasonable
working set for the program established. Figure 1 shows a flow chart of the 6000 and
STAR versions of the algorithm.

8

6000 MATRIX TRIANGULARIZATION STAR

kI I k

Search col k Search col k

for max for max

element; a element; amk

Interchange Interchange
row k and elements
row m of a and a
A and B

i = k Obtain col of *
i=k+l pivots

a aik

ik akk

Obtain pivot i=k+l,...,n

k =-akk

j = k+l

Multiply row k of A, B by

pivot and subtract from Interchange
row i elements
a iJ=a iJ-aikak

= k +
l,...,n amj and akj

biJ=bj-aikbkj J=l,...,r

Multiply col k *
by ak element

iN=i+ 1 No I, aij=a -ajij- ikakj
go to this last i=k+l,...,n

next row -P

Yes
Is No = + 1

this last go to next
Is column? column

k=k+ 1 No triangular-
go to next ization Yes
column complete?

Yes go to next acto
column substitution

Evaluate
determinant Interchange

n - elements No

1
1 a ii bkj and bmj

Is

Multiply col j triangular- Yes

Go to by col k of A ization

back b bibij-aikbkj complete?

substitutioni=k+...n

Is Determinant

j = J + 1 No this last Yes -
go to next right-hand Determinant
column side? *akk

Figure i.- Flow chart of 6000 and STAR version of segments of Gaussian

elimination. An asterisk denotes use of vector instructions.

9

6000 Back GubstiLution STAR

b =
k=n

nj ann

j = l ,...,r
(D

j= 1

k=,n-1

Yes

All b
unkno s k.

Sobtaned bkj

101

No

Dot product
sumbkj-akib

i = k + ,...,n
ik kj

b sum
kj akl

N
All

righthand +o
sides done?

All NoYes
right-hand N Yes
sides done? j +

Yes

All
unknowns No k k 1
obtaine:

Yes

END

Figure 1.- Concluded.

10

Appendix A contains coding of the versions of the algorithm. The 6000 version and

the STAR version coded in 6000 FORTRAN and in STAR FORTRAN are included. The
calling sequence of the subroutine remains the same and no additional storage was

necessary.

Additional Comment

An additional interesting fact was noted when the STAR version of subroutine

GELIM was executed on the 6000 computer. The STAR version ran faster than the

6000 version; as a result, there was about a 10-percent decrease in execution time.

ADAPTATION OF A NUMERICAL INTEGRATION ALGORITHM

Subroutine GLEGEN (see listing in appendix B) uses the Gauss-Legendre quadrature

formula to evaluate simultaneously an array of integrals

fk(x) dx (k = 1, 2, . .. , N)

where N is the number of functions. This subroutine is an example of the manner in

which vectors rather than single variables can be used on STAR. As in the preceding

example, the sequence of instructions is not the same as in the 6000 version. The subrou-
tine subdivides the integration interval (a, b) into NQ panels and the Gauss-Legendre

quadrature formula is applied to each panel by using a 3- or 10-point formula. The

resulting integral Ik is

NQ NP

Ik= A rk(Pi) (k= 1, 2, . . ., N)

j=1 i=1

where

fk function

NQ number of quadratures or panels

NP number of points per quadrature

pi= + Ax i (where Ij is the lower limit of integration for quadrature j)

r i weights for the point formula used

11

x i abscissas for the point formula used

b-a
NQ

(For a complete discussion of the Gauss-Legendre quadrature formula, see any numeri-

cal analysis text, such as ref. 5.)

The 6000 version of the subroutine obtains the first point in a quadrature, evaluates

the function at that point, multiplies the function by the appropriate weight, and adds the

product to a sum. It continues in the same manner until all the points have been evalu-

ated and used in that quadrature; then the process is repeated for the remaining quad-

ratures until the integral has been evaluated over the desired range. The sum is then

multiplied by the appropriate delta to obtain the value of the integral.

Looking at this sequence of instructions shows that much of this work is actually

computed independently. The STAR version takes advantage of this. All the information

required to compute the points is known so all the points for all the quadratures can be

computed to form a long array. This array can be passed to the subroutine to evaluate

the functions and a savings can be obtained by using vector instructions to evaluate the

functions. This routine will now return an array of function values. All the weights are

known so an array can be formed which contains the weights for all the quadratures.

The remaining task is to multiply the weights by the functions and sum the results. This

computation can use the dot product macro; even though it is costly compared with most

vector instructions, it is less expensive than a vector multiply followed by scalar adds.

This formulation requires the use of the dot product only once. A scalar multiply of the

sum by the appropriate delta completes the integral evaluation.

The weights and abscissas for each quadrature are identical; therefore, the length
of these arrays in the 6000 version is equal to 10 for the 10-point formula. A version of

the subroutine using short vectors could have been formed. The STAR version could

have used vector instructions and computed results using one quadrature at a time with

the same array of weights and array length as in the 6000 version. Computing the results

one quadrature at a time means that the startup time associated with each vector instruc-

tion and the startup times used in the function evaluation also would be multiplied by the

number of quadratures used. Depending upon the nature of the function, this amount of
time could be significant.

Vector transmits could be used to create a long vector of weights which is really a
repetition of the short vector. The long vector is

q repetitions

(r , r2,. ., r m , r , r2,. ., rm,. .,rl, r2,. ., rm)

12

where m depends upon the quadrature formula and q is the number of quadratures.

The cost of setting up this vector seems to be minimal when compared with the multipli-

cation of the startup times which would have prevailed in the short-vector version.

A problem of this type (excluding the function evaluation) would probably not pro-

duce a significant paging problem. All the arrays are one dimensional and will most

likely not be extremely long. However, consideration should still be given to the working

set which is created. Currently, there is a tendency to initialize variables at the

beginning of the program. The vector of weights could be created at the beginning of

the program, but they are not used until after the functions are evaluated; therefore, the

vector is not created until just before it is used. Forming the vector of weights and then

immediately using them results in less paging; therefore, a better working set is created

than would have been created by initializing the vector.

Subroutine GLEGEN was adapted for the STAR computer by using the same numeri-

cal method as was used on the 6000. An efficient STAR routine was obtained by using

long vectors and reordering the sequence of instructions. Figure 2 shows a flow chart

of the 6000 and STAR versions.

Appendix B contains the coding of the two versions of the algorithm. The 6000 ver-

sion and the STAR version in 6000 FORTRAN and STAR FORTRAN are included. Notice

that the calling sequence of the STAR version reflects the use of long arrays in that more

working space is needed.

CONCLUDING REMARKS

Two algorithms used on the Control Data Corporation 6000 computer were adapted

for use on the STAR computer. This adaptation required a rethinking of the flow of the

entire problem. Array variables are used where the 6000 code used a single-value

variable and the steps in the algorithm are not computed in the same order for the two

versions. This reordering of steps and changes in variable assignments allow vector

instructions to be used and a reasonable working set can be established for the program;

thereby efficient use of the STAR computer and some implied improvements for the

Control Data Corporation 6000 computer are made.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., February 20, 1974.

13

6000 Numerical Integration STAR

Get A Get A
interval interval

k = quadrature Compute all*

points p.
for all

quadratures

i=1

Evaluate*

function at

all points=f i

Get point pi

Create long*

Evaluate
vector of

function at weights r

pi f=f(Pi
)

Dot product

Multiply f by n

weight and S= ri fi
sum integral i=l

done?
END

Yes

this last No
quadrature? kk+l 1

Yes

Figure 2.- Flow chart of 6000 and STAR versions of Gauss-Legendre

quadrature formula for numerical integration. An asterisk

denotes use of vector instructions.

14

APPENDIX A
"eP . \e

FORTRAN CODING OF 6000 AND STAR VERSIONS OF ALGORITHM FOR THE

SOLUTION OF A SET OF SIMULTANEOUS EQUATIONS

6000 Version in 6000 FORTRAN

SURROUTINE GFL I M(AN,3.NRHS,MAXN, IPIVT, IOP.DETLRM,ISCALt) GELIMOUL

DITMENSION A(MAXN,t AXN) ,3(MAXN,r:HSI , I PIVCT(MAXN) GtL IOO2

A(MAXN.MAXN) = SQUARE MATkIXA F COEFFICIENTS(A IS DESTROYED) GELINu03

N = NUMBEP OF ROS AND COLUMNS IN A GELI MGO4

i(MAXN,NRHS) = AlTRIX CF CONSTANTS(REPLACEU dY SOLUTION MATRIA) GELIMOUS

NRI4S = NU;ABER OF COLUANS IN B GLLIMiGO

MAXN = MAXIHMUM NUIJBER OF ROWS AND COLUMNS IN A Gf-LIMOu7

IPIVUT(MAXN) = kFCORD OF 3PW INTERCHANGES GELIM00b

IOP - T0P=I,FVALUATE DETEPAINANT. IOP=0,SKIP)ETEMINANT EVALUATION 009

DETERM - GI!VES VALUE OF UETE.R- INAT(i)ETERM=(10**100)**IS
C A LE*DtTLRM) 010

ISCALE = SCALE FACTDR COMPUTEu BY SUIRPOUTINE IN LETERM EVALUATION GELIML

TO KEEP DETERM WITHIN THE FLUATING P!OINT WORD SILt OF THE OL2

CO)'PI!TER GELIM i3

SI GN=1.0 GELIMOZO

01 35 I=1,N btLIM030
35 IPIVOT()=I GELIM40

5 ISCALE=O GELIM01O

6 PI=10.0**100 GEL IMOD0

7 R2=1.O/R1 GELIM070

10 DETFRM=1.0 GELIMO d

NM =N-1 GtLIM090

IF(NML.E.O) GOL Tr 1000 GELIMIjO

****+P FIND LARGEST PEMAINING TEPM IN I-TH CLLUMN FOR PIVOT GL IMilO

DO 200 I=1.NM1 .GELIMiLO0

RIG=O. GEL IM130

00 50 K=IN GEL I MiU

TERM=A S(A(K.,)) GELIMiLU

IF(TEPI-BIG)50,50,30 GEL IMilO

33 BIG=TEPM GEL IM17.

L=K GELIMItO

50 CONTINUE GEL I ,K C

IPIVrT(T)-L GELIM2u0

IF(R IG)80,60.83 GELIM2IO

50 DETEPM=0.O GELI Mll

RETUPN GtL IMZ25

80 IF(I-L)90.120,90 GLLIM230

**#~*SWAP ROWS OF A AN B. SET IPIVOT(JI=K. ELIM240

90 SIGN=-SIGN GEL IM250

DO 100 J=1.,N
TEMPI=A (IJ) GELIM270

A I,J)=A LJ) GELIM26

103 (L,J)=TEMPl GEL IM290

DO 101 .J=I1.NoY GLLIM3J

TEMP2=R(I J) GELIM 1G

R(T.J)=R(L. J GEL IM320

101 r(L.J)=TEMP2 GELIM330

120 CONTINUE GELIM3'0

******STORE PIVOT IN A(I,J). MULTIDLY A AND B BY PIVOT. GELIM3S0

IPI=I+L GELIM3oO

00 31 II=IPI N GELIN317

A(III)=A(IT *!)/^(II) GELIM3O0

X3=A(II,I) GELIM340

00 32 K=IP1,N GELIM4 0

15

APPENDIX A - Continued

32 A(II,K)=A(IIK)I-X3*A(I,K) GELIM4LO

O0 33 K=1,NRHS GELIM420
33 B(II,K)= (IIK)-X3*R (IK) GELIM430
31 CONTINUE GELIM440
200 CONTINUE GELIM450

IF(O P.E-0Q.O)r, T n 221 GELIM460
GEL iM4 i

******SCALE THE DETERM INANT GLLIM4o~
GLLIM490

DO 122 I=1,N GELIM500
DIVOTI=A(1,I GtLIM5LC

1035 IF (ABS(I)ETERm)-RL)103u, 1010, 1010 ELIM520
1010 DETERM=DETERM/RL GEL MSC30

IqCALE=ISCALE-1 GELIM54U
IF(ABS(DETERM)-PI)160,1U20, 1L20 GELIM5O

1020 DETERM=0ETERM/R1 GELIM5 0
ISCALE=ISCALh-+1 GELIM5IO
GO TO 1060 GELIMO60

1030 IF(BS(DETERM)-P2)i340,1040,lu60 GELIM50J
1040 DETERM=DE T EM*RL GELIMOJO

ISCAI E=ISCALE-1 GELIMoLb
TF ABS(DETERM)-R211050, 1050,1060 GELIM620

1050 DETEQM=DETERM*RL GLLIM630
I S ALE I SCALE- GELIMo40

1060 IF(ABS(P IVOT I-R 1)1090, 1070, 1070 GLLIM650
1070 PTVOTI=PIVOTT/RI GELIMo60

ISCAL=ISCALE-1 GELIMb O
IF(ABS(PIVOTI)-RI)320.1080.10o0 GELIM6dU

1080 PIVOTI=PIVOTI/Rl GELIM690
I SCALE=ISCALE+I GELIM7J0
GO TO 320 GELIM710

1093 IF(ABS(PIVOT I)-R 2)2000,2000,320 GELIM72U
?000 PIVOTI=PIVOTI* R GELIM730

ISCALE= I SCALE-1 GELIM140
IF ABS(PIVOTI)-P2)2010,2010,320 GELIM75u

2010 DIVOTI=PIVOT *R GELIMi,0
ISCALE= I SCALE-1 GELIMIO0

320 DETERM=DETERM*PIVOTI GELIM70O
122 CONTINUE GELIM790
C GELIM800
****PERFORM BACK SUBSTITUTION GELIM810
221 CONTINUE GELIM820

DO 57 IC=1.NRHS GELIM830
BIN,IC=B(N,ICI/A(N,N) GELIM840

57 CONTINUE GELIM850
00 61 KK=1,NM1 GELIM860
I N-KK GELIM870
11=1+1 GELIM880
DO 61 J=I,NRHS GELIM900
SUM=B(IJ) GELIM910
00 62 K=I1,N GELIM920

62 SUM=SUM-A(I,K)*B(K,JI GELIM930
61 B(I,J)=SUM/A(II) GELIM940

DETERM=DETERM*SIGN GELIN950
RETURN GELIM960

1000 IF(A(1,11.EQ.0) GO TO 60 GELIM970
DO 1500 J=1,NRHS GELIM975

1500 B(I,J)=B(I,J)/A(1,1) GELIM980
DETERM=A(1.1) GELIM990
RETURN GELIM995
END GELM1000

16

APPENDIX A - Continued

STAR Version in 6000 FORTRAN

SUBROUTINE GELIM(AN,B,NRHSMAXNIPIVOT,IOP,DETERMISCALE) GIL60010

DIMENSION A(MAXN,MAXN),B(MAXNNRHS),IPIVOTNAXN) GIL60020

A(MAXN,MAXN) = SQUARE MATRIX OF COEFFICIENTSIA IS DESTROYEDI GIL60030

C N = NUMBER OF ROWS AND COLUMNS IN A GIL60040

BIMAXNNRHS) = MATRIX OF CONSTANTS(REPLACED BY SOLUTION MATRIX) GIL60050

NRHS = NUMBER OF COLUMNS IN B GIL60060

MAXN = MAXIMUM NUMBER OF ROWS AND COLUMNS IN A GIL60070

IPIVOT(MAXN) = RECORD OF ROW INTERCHANGES GIL60080

C IOP - IOP=1,EVALUATE DETERMINANT. IOP=O,SKIP DETERMINANT EVALUATIOGIL60090

C DETERM - GIVES VALUE OF DETERMINATLDETERM=(10**100)**ISCALE*DETERMGIL60IOO
ISCALE = SCALE FACTOR COMPUTED BY SUBROUTINE IN DETERM EVALUATION GIL60110

STO KEEP DETERM WITHIN THE FLOATING POINT WORD SIZE OF THEGIL601O20

COMPUTER GIL60130

TD=0 GIL601O40

SIGN=1.0 GIL60150

DO 3 I=19N GIL60160

3 IPIVOT(Il=I GIL60170

5 ISCALE=O GIL60180

6 RI=10.0**100 GIL60190

7 RZ=1.O/RI GIL60200

10 DETERM=1.0 GIL60210

NM1=N-1 GIL60220

IF (NMI.EO.O) GO TO 600 GIL60210

NPI=N+1 GIL60240

:*****FIND LARGEST REMAINING TERM IN I-TH COLUMN FOR PIVOT GL160250

DO 200 I=1,NM1 GIL60260

BIG=0. GIL60270

DO 50 K=I,N GIL60280

TERM=ABS(A(KI)| GIL60290

IF(TERM-BIG)50,50,30 GIL60300

30 RIG=TERM GIL60310

L=K GIL60320

50 CONTINUE GIL60330

IPIVOT(II=L GIL60340

IF(BIG)80O6080 GIL60350

0 DETERM=0.O GIL60360

RETURN GIL60370

80 IF(I-L)90,120,90 GIL60380

Z*****INTERCHANGE ELEMENTS IN COLUMN I ONLY

90 SIGN=-SIGN GIL60400

TEMPI = A(I,I) GIL60410

A(III=A(L,II GIL60420

A(L,II=TEMPI GIL60430

120 CONTINUE GIL60440

-*****STORE PIVOT IN A(I,JI. MULTIPLY A AND B BY PIVOT. GIL60450

IPl=Il1 GIL60460

=*****OBTAIN COLUMN OF PIVOTS
DO 128 K=IP1,N GIL60470

128 A(KI)=A(KI)/A(III GILbO480

:*****INTERCHANGE ELEMENTS ONLY IN COLUMN J

00 132 J=1.NRHS GIL60490

TEMPI= B(IJ) GIL60500

B(IJ)=B(L.J GIL60510

B(L,Ji=TEMPI GIL60520

DO 130 K=IP1.N GIL60530

130 B(KtJ)=B(K,J) - A(Ktl)*B(I,J) GIL60540

132 CONTINUE GIL60550

:*****INTERCHANGE ELEMENTS ONLY IN COLUMN J

00140 J=IP1,N GIL60560

TEMPI = A(I,J) GIL60570

A(IJ)=AIL9J) GIL60580

A(LJI=TEMPI GIL60590

D0135 K=IP1,N GIL60600

17

APPENDIX A - Continued

135 A(KJ)=A(KJ)-A(KI*A(IJ) GIL60610
140 CONTINUE GIL60620

IF (IOPEOO) GO TO 200 GIL60630
GIL60640

C*****SCALE THE DETERMINANT GIL60650
GIL60660

PIVOTI=A(I.I) GIL60670
1005 IF(ABS(DETERM)-RIl1030,1010,1010 GIL60680
1010 DETERM=DETERM/RI GIL60690

ISCALE=ISCALE+1 GIL60700
IF(ABS(DETERM)-RI1060,1020,1020 GIL60710

1020 DETERM=DETERM/RL GIL60720
ISCALE=ISCALE+ GIL60730
GO TO 1060 GIL60740

1030 IF(ABS(DETERM)-R2)1040.1040.1060 GIL60750
1040 DETERM=DETERM*RI GIL60760

ISCALE=ISCALE-1 GIL60770
IF(ABS(DETERM)-R2)1050,1050,1060 GIL60780

1050 DETERM=DETERM*RI GIL60790
ISCALE=ISCALE-1 GIL60800

1060 IF(ABS(PIVOTII-RI)1090. 1070,1070 GIL60810
1070 PIVOTI=PIVOTI/RI GIL60820

ISCALE=ISCALE+I GIL60830
IF(ABS(PIVOTII-RI)320.1080,1080 GIL60840

1080 PIVOTI=PIVOTI/RI GIL60850
ISCALE= I SCAL E1 GIL60860
GO TO 320 GIL60870

1090 IF(ABS(PIVOTI)-R2)2000,2000,320 GIL60880
2000 PIVOTI=PIVOTI*RI' GIL60890

ISCALE=ISCALE-1 GIL60900
IF(ABS(PIVOTII-R2)2010,2010,320 GIL60910

2010 PIVOTI=PIVOTI*RI GIL60920
ISCALE=ISCALE-1 GIL60930

:*****OBTAIN PARTIAL PRODUCT FOR DETERMINANT
320 DETERM=DETERM*PIVOTI GIL60940

IF (I.NE.NMI) GO TO 200 GIL60950
IF (ID.EQ.11) GO TO 200 GIL60960
PIVOTI=AINN) GIL60970
ID=1 GIL60980
GO TO 1005 GIL60990

200 CONTINUE GIL61000
GIL61010

t*****PERFORM BACK SUBSTITUTION GIL61020
340 CONTINUE GIL61030

DO 450 KK=1,N GIL61040
K=NPI-KK GIL61050

C*****SCALAR DIVIDE
DO 430 J=1,NRHS GIL6100
8(K.J)=B(K,J)/A(K,K) GIL61070
IF (K.EO.1) GO TO 430 GIL61080
KM1=K-1 GIL61090

:*****COLUMN K BY UNKNOWN AND SUBTRACT
DO 420 I=1.KMI GIL61100

420 B(I.JI = BII,J) - A(IK)* B(KJ) GIL61110
430 CONTINUE GIL61120
450 CONTINUE GIL61130

DETERM=DETERM*SIGN GIL61140
RETURN GIL61150

600 IF (A(1,1).EQO.) GO TO 60 GIL61160
DO 800 J=1,NRHS GIL61170

800 BfIJI=B(1,J)/A(1,1) GIL6180
DETERM=A(1,l) GIL61190
RETURN GIL61200
END GIL61210

18

APPENDIX A - Continued

STAR Version in STAR FORTRAN

SUBROUTINE GELIM(ANBNRHS,MAXN, IPIVOT,IOP,DETERM, ISCALE GLIS0010
DIMENSION A(MAXNMAXN),B(MAXN,NRHS),IPIVOT(MAXN) GLISUOZ0

: A(MAXNMAXNI = SQUARE MATRIX OF COEFFICIENTS(A IS DESTROYED) GLIS0030
N = NUMBER OF ROWS AND COLUMNS IN A GLIS0040
B(MAXN,NRHS) = MATRIX OF CONSTANTStREPLACED BY SOLUTION MATRIX) GLIS0050
NRHS = NUMBER OF COLUMNS IN B GLIS0060
MAXN = MAXIMUM NUMBER OF ROWS AND COLUMNS IN A GLIS0070
IPIVOT(MAXN) = RECORD OF ROW INTERCHANGES GLIS0080
IOP - IOP=1,EVALUATE DETERMINANT. IOP=O,SKIP DETERMINANT EVALUATIOGLIS0090
DETERM - GIVES VALUE OF DETERMINAT(DETERM=(1O**100)**ISCALE*ETERMGLISOIOO
ISCALE SCALE FACTOR COMPUTED BY SUBROUTINE IN DETERM EVALUATION GLIS011O

TO KEEP DETERM WITHIN THE FLOATING POINT WORD SIZE OF THEGLIS0120
COMPUTER GLISOI30

ID=0 GLIS0140
SIGN=1.0 GLISO15O
DO 3 I=L,N GLIS0160

3 IPIVOT(I)=I GLIS0170
5 ISCALE=O GLISOIBO
6 RI=O1.0**100 GLISOO90
7 R2=1.O/RI GLISu2OO

10 DETERM=1.0 GLIS0210
NM1=N-1 GLIS0220
IF (NMI.EQ.0) GO TO 600 GLIS0230
NPI=N+1 GLISO240

:*****FIND LARGEST REMAINING TERM IN I-TH COLUMN FOR PIVOT GLIS0250
DO 200 I=INM1 GLISO260

GLISO210
: NEED VECTOR ABSOLUTE , MAXIMUM BECAUSE YOU ARE SEARCHING COLUMN GLIS0280

GLISu290
BIG=O. GLIS300
00 50 K=I,N GLIS03O10
TERM=ABS(A(K,I)) GLISO320
IF(TERM-BIG)50,50,30 GLIS0330

30 BIG=TERM GLIS0340
L=K GLIS0350

50 CONTINUE GLIS0360
IPIVOTII)=L GLIS0370
IF(BIG)80,60,80 GLISO380

60 DETERM=0.0 GLIS0390
RETURN GLISO400

80 IF(I-L)90l120,90 GLISO4IO
90 SIGN=-SIGN GLIS0430
:*****INTERCHANGE ELEMENTS IN COLUMN I ONLY

TEMP1= A(I,I) GLIS0440
A(II)=A(L.I) GLIS0450
A(L,I)=TEMP1 GLIS0460

120 CONTINUE GLISO470
C*****STORE PIVOT IN A(I,J). MULTIPLY A AND B BY PIVOT. GLIS0480

IP1=I1 GLISO490
'*****OBTAIN COLUMN OF PIVOTS

AIIPI:N,I)= A(IP1:NI)/AI,I) GLIS0500
C*****INTERCHANGE ELEMENTS ONLY IN COLUMN J

00131 J=1,NRHS GLIS0510
TEMPI= B(IJI GLIS0520
B(I,JI=B(L,JI GLIS0530
BILJ)=TEMPI GLIS0540

131 B(IPI:N.J) = B(IPI:N,Jl -A(IPI:NI) * B(I,J) GLISU550
C****INTERCHANGE ELEMENTS ONLY IN COLUMN J

D0134 J=IP1.N GLISO60
TEMPI= A(I,J) GLIS0570
A(IJi=A(L,Jl GLISOSBO
A(LJ)=TEMPI GLIS0590

19

APPENDIX A - Concluded

134 A(IPI:N.J= A(IPI:NJ) -A(IPi:NI)* A(I,J) GLIS0600

IF (IOP.EQ.O) GO TO 200 GLIS0610
GLISO620

.*****SCALE THE DETERMINANT GLISO630
GLIS0640

PIVOTI=A(III) GLIS0650

1005 IFIABS(DETERM)-R11030,O1010,O110 GLIS0660

1010 DETERM=DETERM/R1 GLIS0670

ISCALE=ISCALE+1 GLIS0680

IF(ABS(DETERM)-R1)1060.1020 1020 GLIS0690

1020 DETERM=DETERM/R1 GLIS0700

ISCALE=ISCALE+1 GLIS0710

GO TO 1060 GLIS0720

1030 IF(ABS(DETERM)-R2)1040,1040,1060 GLIS0730

1040 DETERM=DETERM*RI GLIS0740

ISCALE=ISCALE-1 GLIS0750

IF(ABS(DETERM)-R21050, 1050,1060 GLIS0760

1050 DETERM=DETERM*RI GLIS0770

ISCALE= I SCALE-1 GLIS0780
1060 IF(ABS(PIVOTI)-R131090,1070,1070 GLIS0790

1070 PIVOTI=PIVOTI/RI GLISuO00
ISCALE=ISCALE+1 GLISO81U

IF(ABS(PIVOTII-RI320,1080,1080 GLIS0820

1080 PIVOTI=PIVOTI/RI GLISOB830

ISCALE=ISCALE+1 GLIS0840

GO TO 320 GLIS0850

1090 IFIABS(PIVOTI)-R212000,2000.320 GLISO8aO

2000 PIVOTI=PIVOTI*R1 GLIS0870

ISCALE=ISCALE-1 GLIS0880

IF(ABS(PIVOTII-R2)201092010,320 GLIS0890

2010 PIVOTI=PIVOTI*R1 GLIS0900

ISCALE=ISCALE-1 GLIS0910

:*****OBTAIN PARTIAL PRODUCT FOR DETERMINANT
320 DETERM=DETERM*PIVOTI GLISO920

IF (I.NE.NMII GO TO 200 GLIS0930

IF (ID.EQ.1) GO TO 200 GLISO940

PIVOTI=A(NN) GLISO950

ID=1 GLIS0960

GO TO 1005 GLIS0970

200 CONTINUE GLIS0980

C GLIS0990

:*****PERFORM BACK SUBSTITUTION GLIS100O

340 CONTINUE GLISIO10

00 450 KK=1,N GLISO20
K=NP1-KK GLIS1030

C*****SCALAR DIVIDE
00 430 J=1,NRHS GLIS1040
B(KJ)=B(KtJ)/A(KK) GLIS1050
IF (K.EQ.1) GO TO 430 GLIS1060

KM1=K-1 GLIS1070

:*****COLUMN K BY UNKNOWN AND SUBTRACT
8(1:KM1,J)= B(1:KM1,J) -A(I:KMIK)3 B(KJ) GLIS1080O

430 CONTINUE GLIS1090
450 CONTINUE GLIS1100

DETERM=DETERM*SIGN GLIS1110
RETURN GLIS1120

600 IF (AIL,1).EQ.0 GO TO 60 GLIS130

B(1,1:NRHS)= B(I1,:NRHS)/A1,1) GLISI140
DETERM=A(I.1) GLIS1150

RETURN GLIS1160
END GLISIL70

20

APPENDIX B

FORTRAN CODING OF 6000 AND STAR VERSIONS OF ALGORITHM

FOR NUMERICAL INTEGRATION EVALUATION

6000 Version in 6000 FORTRAN

SUBROUTINE GLEGEN(SUM.ICODEAB, FXFOFX, NFX NQNPQ) GLEGN 1
:*** GLEGN 2
* * GLEGN 3

=t PURPOSE: TO COMPUTE THE INTEGRALS, F(I) OF X * DX FROM * GLEGN 4
=" A TO B USING THE GAUSS-LEGENDRE QUADRATURE * GLEGN 5
* FORMULA. * GLEGN 6

-* * GLEGN 7
0* USE: CALL GLEGEN (SUM.ICODE,A,B,FX,FOFX,NFX,NONPQ)* GLEGN 8
* * GLEGN 9
.* PARAMETERS: * GLEGN 10

=* SUM THE ARRAY FOR THE VALUE(S) OF THE INTEGRAL(S) * GLEGN 11
3* * GLEGN 12
-* ICODE AN INTEGER TEST CODE RETURNED BY THE ROUTINE * GLEGN 13
= = 0. NORMAL RETURN * GLEGN 14
2* = 1, NFX NOT PROPERLY SPECIFIED * GLEGN 15
-* = 2. NPO NOT PROPERLY SPECIFIED (NOT 3 OR 10) * GLEGN 16
"8 = 3. NO NOT PROPERLY SPECIFIED * GLEGN 17
C* * GLEGN 18
=t. THIS PARAMETER SHOULD BE TESTED UPON RETURN * GLEGN 19
:* BY THE CALLING PROGRAM * GLEGN 20
-* * GLEGN 21
=, A LOWER LIMIT OF INTEGRATION * GLEGN 22
0* * GLEGN 23
* B UPPER LIMIT OF INTEGRATION * GLEGN 24
2* * GLEGN 25
=e FX THE NAME OF A USER SUPPLIED SUBROUTINE WITH * GLEGN 26
"t ARGUMENTS X AND FOFX TO EVALUATE THE FUNCTIONS* GLEGN 27
C* IT MUST BE DECLARED AS EXTERNAL. * GLEGN 28
-* * GLEGN 29
=* FOFX THE ARRAY TO STORE THE VALUES OF THE FUNCTIONS* GLEGN 30
-* * GLEGN 31
=8 NFX AN INTEGER, THE NO. OF FUNCTIONS TO INTEGRATE * GLEGN 32
0* * GLEGN 33
-* NO AN INTEGER, THE NUMBER OF QUADRATURES * GLEGN 34
* * GLEGN 35

-* NPQ AN INTEGER, THE NO. OF POINTS PER QUADRATURE * GLEGN 36
:* IT MUST BE 3 OR 10 * GLEGN 37
Z* * GLEGN 38
3* REQUIRED ROUTINES: NONE * GLEGN 39
-* * GLEGN 40
C* SOURCE/IMPLEMENTER: COMPUTER- SCIENCES CORP./ G. W. HAIGLER * GLEGN 41
0* * GLEGN 42
C* DATE RELEASED: NOV. 14.1972 * GLEGN 43
* * GLEGN 44

C* LATEST REVISION: NOV. 15,1972 * GLEGN 45

21

APPENDIX B - Continued

******************* *** GLEGN 46
GLEGN 47

DIMENSION Ul(3),U2(10),R1(3),R2(10,U(13)tR(13),SUM(I),FOFX(1) GLEGN 48
GLEGN 49

EQUIVALENCE (Ul(1),U(1)l,(U2(1),U(4)I(RI(1)iR(11),(R2(1).RI4)) GLEGN 50
GLEGN 51

DATA UI/o112701665379259,.5,.887298334620742/,U2/.013046735741414,GLEGN 52
L.061468316655507,.160295215850488..283302302935376,.42556283050918GLEGN 53
25..574437169490816,.716697697064624,.839704784149512,.932531683344GLEGN 54
3493,.986953264258586/,R1/.277777777777178,.444444444444444..277777GLEGN 55
4777777778/,R2/.033335672154344,.074725674575291,.109543181257991, GLEGN 56
5.134633359654998..14776211235737 147711 7,.13463335965499GLEGN 57
68,.109543181257991,.074725674575291,.033335672154344/ GLEGN 58

GLEGN 59
ICODE = 0 GLEGN 60
IF(NFX.LE.O)ICODE = 1 GLEGN 61
IF(NQ.LE.OICOOE = 3 GLEGN 62
IF(NPQ.EQ.3)GO TO 5 GLEGN 63
IF(NPQ.NE.10)ICODE = 2 GLEGN 64

5 IF(ICODE.GT.OIRETURN GLEGN 65
J=3 GLEGN 66
IF (NPQ .EQ. 3) J=O GLEGN 67
DELT= (B-A)/FLOATINO) GLEGN 68
DO 10 I = 1INFX GLEGN 69

10 SUM(I) = 0.0 GLEGN 70
00 80 K=I,NO GLEGN 71
XI = K - 1 GLEGN 72
FF = A + XI*DELT GLEGN 73
DO 80 L=1,NPQ GLEGN 74
UU=U(J+LI)OELT+FF GLEGN 75
CALL FX(UUFOFX) GLEGN 76
FACT=R (J L) GLEGN 77
DO 80 JB=1,NFX GLEGN 78

80 SUM(JBI =FOFX(JB)*FACT+SUM(JB) GLEGN 79
DO 100 II=1,NFX GLEGN 80

100 SUM(II) = SUM(II)*DELT GLEGN 81
RETURN GLEGN 82
END GLEGN 83

STAR Version in 6000 FORTRAN

SUBROUTINE GLEGENS(SUM,ICODE,AB,FX,FOFX,NFXNQONPQ,UUFF,UDeMAXI)GLENS01I
: **g******** GLENS002
-* * GLENSU03
:* PURPOSE: TO COMPUTE THE INTEGRALS, F(I) OF X * DX FROM * GLENS004
C* A TO B USING THE GAUSS-LEGENDRE QUADRATURE * GLENSOO5
=* FORMULA. * GLENS006
-* * GLENS007
=* USE: CALL GLEGEN (SUMICODE,AB,6FXFOFX,NFX,NQNPQI* GLENSOO8
',* * GLENS009
C* PARAMETERS: * GLENSO10
=a SUM THE ARRAY FOR THE VALUE(S) OF THE INTEGRAL(S) * GLENSOI1
-- * GLENSOI2

ICODE AN INTEGER TEST CODE RETURNED BY THE ROUTINE * GLENS013
* = t0 NORMAL RETURN * GLENSO14

, = l NFX NOT PROPERLY SPECIFIED * GLENSO15
* = 2, NPQ NOT PROPERLY SPECIFIED (NOT 3 OR 10) * GLENS016

=* = 3. NQ NOT PROPERLY SPECIFIED * GLENS017
-* * GLENS018
C* THIS PARAMETER SHOULD BE TESTED UPON RETURN * GLENS019
t* BY THE CALLING PROGRAM * GLENSO20
ts * GLENSO21

22

APPENDIX B - Continued

0* A LOWER LIMIT OF INTEGRATION * GLENSO22
C* * GLENSO23
* B UPPER LIMIT OF INTEGRATION * GLENSO24

tr * GLENSO25
C* FX THE NAME OF A USER SUPPLIED SUBROUTINE WITH * GLENSO26
C* ARGUMENTS X AND FOFX TO EVALUATE THE FUNCTIONS* GLENS027
C* IT MUST BE DECLARED AS EXTERNAL. * GLENS028
-* * GLENSO29

FOFX A TWO DIMENSIONED ARRAY TO STORE VALUES OF THE GLENSO30

FUNCTIONS, FOFX(MAXI,NFX) IN CALLING PROGRAM GLENS031
+* * GLENSO32

-* NFX AN INTEGER, THE NO. OF FUNCTIONS TO INTEGRATE * GLENS033
o* * GLENS034

-* NO AN INTEGER, THE NUMBER OF QUADRATURES * GLENSO35
C* * GLENS036

=t NPQ AN INTEGER, THE NO. OF POINTS PER QUADRATURE * GLENS037
C* IT MUST BE 3 OR 10 * GLENS038
t+ * GLENS039
C UU ARRAY TO STORE ALL POINTS AT WHICH FUNCTION IS GLENSO40
=* EVALUATED ,ALSO STORES WEIGHTS GLENS041
* FF ARRAY OF WORKING SPACE, CONTAINS LOWER LIMIT OF GLENS042

C INTEGRATION FOR EACH QUADRATURE GLENSO43
-* UD ARRAY OF WORKING SPACE, ABSCISSAS* DELT GLENSO44
C8 MAXI MAXIMUM ROW DIMENSIONS OF FOFX IN CALLING PROG. GLENS045

GLE6S046
-* * GLE65047
C* REQUIRED ROUTINES: NONE * GLE6SO48
-* * GLE6S049
:* SOURCE/IMPLEMENTER: COMPUTER SCIENCES CORP./ G. W. HAIGLER * GLE6S050
-* * GLE6SO51
*o DATE RELEASED: NOV. 14,1972 * GLE6SO52
8* * GLE6S053

C* LATEST REVISION: NOV. 15,1972 * GLE65054
*****+********* *******4 *************************************** GLE650O55

GLE65056
DIMENSION Ul(3),U2(LO),RI(3),R2(101U3)U(R(13),SUM(1), GLEbSO57

I FOFX(MAXI,I),UU(I IUD(1),FFIl I GLE6SO58
C GLEbS059

EQUIVALENCE (Ul(1).U(11I,(U2(11,U(4)),(RI(1),R(1IIdRZ(1I,R(4)) GLE6S060
C GLE6Sb61

DATA ULI.112701665379259,.5,.88729833462C742/,U2/.013046735741414,GLE65062
1.067468316655507..160295215850488,.283302302935376,.42556283050918GLE6SOb3
25..574437169490816..716697697064624,.839704784149512,.932531683344GLE6SO64
3493..986953264258586/,RI/.27777777777778,.444444444444444..277777GLE6SO65
4777777778/.R2/.O033335672154344,.074725674575291..109543181257991, GLE6SO66
5.134633359654998..147762112357377,.147762112357371,.13463335965499GLE6S067
68,.109543181257991..074725674575291,.033335672154344/ GLE65068

GLE6SO069
ICODE = 0 GLE6SOIO

C NT = TOTAL. NUMBER OF POINTS AT WHICH FUNCTION WILL BE EVALUATED GLE6SO71
NT=NQ*NPQ GLE6SO72
IF(NFX.LE.O)ICODE = 1 GLE6SO73
TF(NQ.LE.OIICODE = 3 GLE6S074
IF(NPQ.EQ.3)GO TO 5 GLE6S075
IF(NPQ.NE.1OIICODE = 2 GLE6bS76

5 IF(ICODE.GT.O)RETURN GLE6SO77
J=3 GLEbS078
IF (NPQ .EQ. 3) J=O GLE6SO79
DELT= (-AI)/FLOAT(NO) GLE6SO80

:*****COMPUTE ARRAY TO BE ADDED TO FIRST POINT IN EACH QUADRATURE
DO 20 K=1,NPQ GLE6SO81
Jl =JK GLE6S082

20 UD(K) = U(JII*DELT GLE6SO83

23

APPENDIX B - Continued

C*****COMPUTE FIRST POINT IN EACH QUADRATURE
DO 30 K=1,NQ GLE6S084
XI =K-1 GLE6SO85

30 FF(K) =A + XI*DELT GLE6S086
CREATE VECTOR OF ALL POINTS FOR ALL QUADRATURES GLE6SO87

DO 40 K=-i,NQ GLE6SO88
K1 =(K-li*NPQ GLE6SO89
DO 35 I=1,NPQ GLE6SO90

35 UU(KIeII = FF(KI+ UD(I) GLE6S091
40 CONTINUE GLE6SO92
EVALUATE FUNCTION AT ALL POINTS GLE6SO93
NOTE CHANGE IN CALLING SEQUENCE FOR FUNCTION EVALUATION SUBROUTINE GLE6SO94

CALL FXS(UUFOFXMAXINT) GLE6SO95
CREATE VECTOR OF WEIGHTS GLE6SO96

00 50 K=1,NQ GLE6SO97
K1 =IK-1)*NPQ GLE6SO98
DO 45 I= 1,NPQ GLE6SO99

45 UU(Kl+I) = R(J.I) GLE6S1OO
50 CONTINUE GLE6S101

DO 80 I=I,NFX GLE6SLO2
SUM(I)=0.0 GLE6S103
DO 70 K=1,NT GLE6S104

70 SUM(II= SUM(I +UU(K)* FOFX(K,II GLE6SI05
SUM(II = DELT * SUM(I) GLE6SIO

80 CONTINUE GLE6SIO7
RETURN GLE6SLO8
END GLE6S09

STAR Version in STAR FORTRAN

SUBROUTINE GLEGENSI SUM, ICODE,AB, FX,FOFX,NFX,NQNPQUU,FFUD,MAXIIGLE6S5001
:** GLE6S0O2
-* * GLE6S003
C* PURPOSE: TO COMPUTE THE INTEGRALS, F(I) OF X * DX FROM * GLE6SO04
o* A TO B USING THE GAUSS-LEGENDRE QUADRATURE * GLE6SU05

-t FORMULA. * GLEbSO06
* * GLE6SO07

CS USE: CALL GLEGEN (SUM,ICODEA,B,FXFOFX,NFX,NQNPQ)* GLE6SU08
3C * GLE6SO09
:* PARAMETERS: * GLE6SOLO
2* SUM THE ARRAY FOR THE VALUE(S) OF THE INTEGRAL(S) * GLE6SO1I
,* * GLE6SO12
1* ICODE AN INTEGER TEST CODE RETURNED BY THE ROUTINE * GLE6SO13

* = 0, NORMAL RETURN * GLE6SO14
.* = 1, NFX NOT PROPERLY SPECIFIED * GLE6SO15
Ct = 2, NPQ NOT PROPERLY SPECIFIED (NOT 3 OR 10) * GLEbSOL6
C* = 3, NO NOT PROPERLY SPECIFIED * GLE6SO17
C* * GLE6SOi8
:* THIS PARAMETER SHOULD BE TESTED UPON RETURN * GLE6SOI9
S* BY THE CALLING PROGRAM * GLE6SO20
-* * GLE6SO21

* A LOWER LIMIT OF INTEGRATION * GLE6SO22
-* * GLE65023
-* B UPPER LIMIT OF INTEGRATION * GLESO024
9* * GLE6SO25

-" FX THE NAME OF A USER SUPPLIED SUBROUTINE WITH * GLE6SO26
-* ARGUMENTS X AND FOFX TO EVALUATE THE FUNCTIONS* GLE6SO27

* IT MUST BE DECLARED AS EXTERNAL. * GLE6SO28
r* * GLE6SO29

FOFX A TWO DIMENSIONED ARRAY TO STORE VALUES OF THE GLE6SO30
FUNCTIONS, FOFX(MAXINFX) IN CALLING PROGRAM GLE6SO31

24

APPENDIX B - Continued

* . GLE6S032

-* NFX AN INTEGER, THE NO. OF FUNCTIONS TO INTEGRATE * GLE6SO33
C* * GLE6S034

* NO AN INTEGER, THE NUMBER OF QUADRATURES * GLEbS035
t * GLE6S036

C* NPQ AN INTEGER, THE NO. OF POINTS PER QUADRATURE * GLE6SO37
-* IT MUST BE 3 OR 10 * GLEbSO38
C- UU ARRAY TO STORE ALL POINTS AT WHICH FUNCTION IS GLE6SO39

0: .EVALUATED ,ALSO STORES WEIGHTS GLE6SO40
:* FF ARRAY OF WORKING SPACE, CONTAINS LOWER LIMIT OF GLE6S041

* INTEGRATION FOR EACH QUADRATURE GLE6SO42

* UD ARRAY OF WORKING SPACE. ABSCISSAS* DELT GLE6SO43
Co GLE6SO44

-* MAXI MAXIMUM ROW DIMENSIONS OF FOFX IN CALLING PROG. GLE6S045
Co GLENS046
C* REQUIRED ROUTINES: NONE * GLENSO47
C* * GLENS048
:* SOURCE/IMPLEMENTER: COMPUTER SCIENCES CORP./ G. W. HAIGLER * GLENSO49
= *' GL.ENS05O0
C* DATE RELEASED: NOV. 14,1972 * GLENS051
-* * GLENS052
C* LATEST REVISION: NOV. 15,1972 * GLENS053

S*** GLENS054
GLENSO55

DIMENSION UI(3),U2(101,RI(3),R2(10),U(13),R(13).SUM(1), GLENS056

1 FOFX(MAXI,I I,UU(1),UD(1),FF(1) GLENS057
GLENSO58

EQUIVALENCE (U1(1),U(l),(U211)Ul(4)),dRl(1i,RI()),(R2(1),R(4)) GLENS09
GLENSO60

DATA U1/.112701665379259,.5,.887298334620742/,U2/.013046735741414.GLENS061
1.067468316655507,.160295215850488..283302302935376,.42556283050918GLENS062
25,.574437169490816,.716697697064624.839704784149512,.932531683344GLENS063
3493,.986951264258586/,Rl/.277777777777778,.444444444444444,.277777GLENS64
4777777778/,R2/.033335672154344.074725674575291,.109543181257991. GLENSO65
5. 134633359654998,.147762112357377,.141762112357377. 13463335965499GLENS066
68,.109543181257991,.074725674575291,.033335672154344/ GLENS067

GLENS06O
ICODE = 0 GLENS069

C NT = TOTAL NUMBER OF POINTS AT WHICH FUNCTION WILL BE EVALUATED GLENS070
NT=NQ*NPQ GLENS071
IF(NFX.LE.OIICODE = 1 GLENS72
IF(NQ.LE.OIICODE = 3 GLENS073
IF(NPQ.EQ.3)GO TO 5 GLENS074
IF(NPQ.NE.1O)ICODE = 2 GLENS075

5 IF(ICODE.GT.O)RETURN GLENSO6
J=3 GLENS077
IF INPO .EQ. 3) J=0O GLENS078
DELT = (B-AI/FLDATINQ) GLENS079

JI = Jl GLENSO80
NJ= J +NPQ GLENSO81

:*****COMPUTE ARRAY TO BE ADDED TO FIRST POINT IN EACH QUADRATURE GLENS082
UD(I:NPQ) = U(JL:NJI * DELT GLENSO83

:*****COMPUTE FIRST POINT IN EACH QUADRATURE GLENS084

DO 30 K=1,NQ GLENSOB5
XI =K-1 GLENS086

30 FF(K) =A + XI*DELT GLENSO87
C*****COMPUTE ARRAY OF ALL POINTS FOR ALL QUADRATURES GLENSOB8

00 40 K=1,NQ GLENS089
KI =(K-11*NPO GLENS090

NK= K + NPO GLENSO91
UU(KI*+:NK) = FF(KI + UD(1:NPQ) GLENS092

40 CONTINUE GLENSO93
C EVALUATE FUNCTION AT ALL POINTS GLENSO94

25

APPENDIX B - Concluded

: NOTE CHANGE IN CALLING SEQUENCE FOR FUNCTION EVALUATION SUBROUTINE GLENS095
CALL FXS(UUFOFXMAXI,NT) GLENS096

: CREATE VECTOR OF WEIGHTS GLENS097
00 50 K=1tNQ GLENS098
K1 =(K-1)*NPQ GLENS099
NK = K+ NPQ GLENS 100
UU(KII:NKI = R(J1:NJ) GLENS101

50 CONTINUE GLENSL02
C THESE STATEMENTS CAN BE REPLACED BY DOT PRODUCT FUNCTION IF AVAILABLEGLENS103
C SUCH AS GLENSIO4

SUM(I) = DOTP (UU(I:NT) ,FOFX(1:NT, I) GLENSLO5
GLENS106

* GLENS107
DO 80 I=INFX GLENS108
SUMi(1=0.0 GLENS109
DO 70 K=1,NT GLENS110

70 SUM(I3= SUMII) *UU(K)* FOFXIKI) GLENS111
SUM(If = DELT * SUM(I) GLENSL12

80 CONTINUE GLENS113
** GLENSL14

RETURN GLENS115
END GLENS116

26

REFERENCES

1. Anon.: Control Data STAR Computer System FORTRAN Reference Manual.

60384500 A, Control Data Corp., c.1973.

2. Anon.: Control Data STAR-100 Computer System Hardware Reference Manual.

60256000 06, Control Data Corp., c.1973.

3. Denning, Peter J.: Virtual Memory. Comput. Surv., vol. 2, no. 3, Sept. 1970,

pp. 153-189.

4. Lambiotte, Jules J., Jr.; and Howser, Lona M.: Vectorization on the STAR Computer

of Several Numerical Methods for a Fluid Flow Problem. NASA TN D-7545, 1974.

5. Hildebrand, F. B.: Introduction to Numerical Analysis. McGraw-Hill Book Co., Inc.,

1956.

NASA-Langley, 1974 L-9380 27

